论文标题
Fréchet空间中的逆功能定理
Inverse Function Theorem in Fréchet Spaces
论文作者
论文摘要
我们从Ekeland和作者最近的某些发展角度考虑了Nash和Moser的经典逆函数定理。 驯化估计值的几何化以及应用于方向性分化函数时来自变化分析的某些想法,产生非常一般的溢流性结果,如果可以确保注射率,则具有预期的Lipschitz样连续性的逆函数定理。 我们还向微分方程提供了简短的应用程序。
We consider the classical Inverse Function Theorem of Nash and Moser from the angle of some recent development by Ekeland and the authors. Geometrisation of tame estimates coupled with certain ideas coming from Variational Analysis when applied to a directionally differentiable function, produce very general surjectivity result and, if injectivity can be ensured, Inverse Function Theorem with the expected Lipschitz-like continuity of the inverse. We also present a brief application to differential equations.