论文标题

基于热力学的人工神经网络

Thermodynamics-based Artificial Neural Networks for constitutive modeling

论文作者

Masi, Filippo, Stefanou, Ioannis, Vannucci, Paolo, Maffi-Berthier, Victor

论文摘要

机器学习方法,尤其是人工神经网络(ANN)已经证明了材料本构建模的有希望的功能。这种方法的主要缺点之一是缺乏基于物理定律的严格框架。这可能会使身体上的预测物理上不一致,这对于实际应用来说甚至可能是危险的。 在这里,我们提出了一类新的基于数据驱动的基于物理的神经网络,用于在材料点级别对应变速率过程的本构建模,我们将其定义为基于热力学的人工神经网络(TANN)。热力学的两个基本原理通过利用自动分化来计算网络相对于其输入的数值衍生物,在网络的体系结构中编码。这样,自由化的衍生物,耗散速率及其与压力和内部状态变量的关系在网络中是硬连接的。因此,我们的网络不必在培训过程中识别热力学定律的潜在模式,从而减少了大型数据集的需求。此外,训练更有效,更强大,预测更准确。最后,越来越重要的是,即使对于看不见的数据,预测在热力学上仍然保持一致。基于这些功能,TANN是通过神经网络基于数据驱动的,基于物理学的组成型建模的起点。 我们证明了Tann在用应变硬化和应变软化的情况下对弹性塑料材料进行建模的广泛适用性。详细的比较表明,对天牛的预测优于标准ANN的预测。 Tanns的体系结构是一般的,可以使应用于具有不同或更复杂行为的材料,而无需任何修改。

Machine Learning methods and, in particular, Artificial Neural Networks (ANNs) have demonstrated promising capabilities in material constitutive modeling. One of the main drawbacks of such approaches is the lack of a rigorous frame based on the laws of physics. This may render physically inconsistent the predictions of a trained network, which can be even dangerous for real applications. Here we propose a new class of data-driven, physics-based, neural networks for constitutive modeling of strain rate independent processes at the material point level, which we define as Thermodynamics-based Artificial Neural Networks (TANNs). The two basic principles of thermodynamics are encoded in the network's architecture by taking advantage of automatic differentiation to compute the numerical derivatives of a network with respect to its inputs. In this way, derivatives of the free-energy, the dissipation rate and their relation with the stress and internal state variables are hardwired in the network. Consequently, our network does not have to identify the underlying pattern of thermodynamic laws during training, reducing the need of large data-sets. Moreover the training is more efficient and robust, and the predictions more accurate. Finally and more important, the predictions remain thermodynamically consistent, even for unseen data. Based on these features, TANNs are a starting point for data-driven, physics-based constitutive modeling with neural networks. We demonstrate the wide applicability of TANNs for modeling elasto-plastic materials, with strain hardening and strain softening. Detailed comparisons show that the predictions of TANNs outperform those of standard ANNs. TANNs ' architecture is general, enabling applications to materials with different or more complex behavior, without any modification.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源