论文标题

非负高斯二次形式的尖锐方差 - 注入比较

Sharp variance-entropy comparison for nonnegative Gaussian quadratic forms

论文作者

Bartczak, Maciej, Nayar, Piotr, Zwara, Szymon

论文摘要

在本文中,我们研究了$ n $ i.i.d.的加权总和。伽玛($α$)随机变量具有非负重。我们表明,对于$ n \ geq 1/α$,当固定方差时,具有相等系数的总和可以最大化差分熵。结果,我们证明,在$ n $ n $独立的标准高斯随机变量中,在固定方差下,具有相等系数的对角线形式在$ n $ n $独立的标准高斯随机变量中,具有相等系数的对角性形式。这为非负二次形式和高斯随机变量之间的相对熵提供了锐利的下限。还会得出符合$ n $独立添加剂噪声的传输通道能力的界限。

In this article we study weighted sums of $n$ i.i.d. Gamma($α$) random variables with nonnegative weights. We show that for $n \geq 1/α$ the sum with equal coefficients maximizes differential entropy when variance is fixed. As a consequence, we prove that among nonnegative quadratic forms in $n$ independent standard Gaussian random variables, a diagonal form with equal coefficients maximizes differential entropy, under a fixed variance. This provides a sharp lower bound for the relative entropy between a nonnegative quadratic form and a Gaussian random variable. Bounds on capacities of transmission channels subject to $n$ independent additive gamma noises are also derived.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源