论文标题
使用THZ 2D相干光谱观察边缘费米玻璃
Observation of a marginal Fermi glass using THz 2D coherent spectroscopy
论文作者
论文摘要
凝结物理学中的一个长期开放问题是,是否可以将强大的相互作用绝缘子映射到有效的非相互作用局部激发系统中。我们使用Terahertz二维相干光谱的新技术在磷掺杂硅中的3D金属绝缘体转变(MIT)的绝缘侧研究了这个问题。尽管这些材料的本质性质本质上是无序的性质,但我们观察到连贯的激发和强烈的光子回声,为我们提供了一种有力的方法来研究其衰变过程。我们在此经典系统中提取了能量放松($ T_1 $)和倒流($ T_2 $)的第一个测量值($ T_2 $)。我们观察到(i)两种放松率在激发频率下是线性的,斜率接近统一,(ii)能量放松时间尺度$ t_1 $随着温度的升高和(iii)相干放松时间表$ t_2 $在5 k和25 k之间几乎没有温度依赖性,但违反直觉在材料上增加了材料,而匹配的温度较小。我们认为这些特征表明(a)该系统在感兴趣的时间尺度上表现为一个孤立的电子系统,并且(b)松弛由电子电子相互作用控制。我们讨论可能解释行为的潜在放松渠道。我们的观察结果构成了一种定性的新现象学,这是由强障碍和强烈电子 - 电子相互作用的相互作用驱动的,我们将其配音为边际费米玻璃。
A longstanding open problem in condensed matter physics is whether or not a strongly disordered interacting insulator can be mapped to a system of effectively non-interacting localized excitations. We investigate this issue on the insulating side of the 3D metal-insulator transition (MIT) in phosphorus doped silicon using the new technique of terahertz two dimensional coherent spectroscopy. Despite the intrinsically disordered nature of these materials, we observe coherent excitations and strong photon echoes that provide us with a powerful method for the study of their decay processes. We extract the first measurements of energy relaxation ($T_1$) and decoherence ($T_2$) times close to the MIT in this classic system. We observe that (i) both relaxation rates are linear in excitation frequency with a slope close to unity, (ii) the energy relaxation timescale $T_1$ counterintuitively increases with increasing temperature and (iii) the coherence relaxation timescale $T_2$ has little temperature dependence between 5 K and 25 K, but counterintuitively increases as the material is doped towards the MIT. We argue that these features imply that (a) the system behaves as a well isolated electronic system on the timescales of interest, and (b) relaxation is controlled by electron-electron interactions. We discuss the potential relaxation channels that may explain the behavior. Our observations constitute a qualitatively new phenomenology, driven by the interplay of strong disorder and strong electron-electron interactions, which we dub the marginal Fermi glass.