论文标题

最小重量顶点盖的大量平行算法

A Massively Parallel Algorithm for Minimum Weight Vertex Cover

论文作者

Ghaffari, Mohsen, Jin, Ce, Nilis, Daan

论文摘要

我们提出了一种大规模并行算法,每台机器具有接近线性的内存,该算法计算$(2+ \ varepsilon)$ - 最小重量顶点封面的近似值(\ log \ log \ log \ log \ log \ log \ log \ log d)$ rounds,其中$ d $是输入图的平均程度。 我们的结果填补了有关顶点覆盖和匹配问题的最先进MPC算法中剩余的剩余差距;两个经典的优化问题,它们是彼此双重的。具体而言,Czumaj等人最近的工作 - - 。 [Stoc'18],Ghaffari等。 [PODC'18],Assadi等。 [Soda'19]和Gamlath等。 [PODC'19] ---提供$ O(\ log \ log n)$(1+ \ Varepsilon)$的时间算法 - 大约最大重量匹配,以及$(2+ \ varepsilon)$ - 近似的最小基数角度顶点封面。但是,后一种算法对顶点盖的一般加权案例不起作用,为此,最著名的算法仍处于$ O(\ log n)$时间复杂性。

We present a massively parallel algorithm, with near-linear memory per machine, that computes a $(2+\varepsilon)$-approximation of minimum-weight vertex cover in $O(\log\log d)$ rounds, where $d$ is the average degree of the input graph. Our result fills the key remaining gap in the state-of-the-art MPC algorithms for vertex cover and matching problems; two classic optimization problems, which are duals of each other. Concretely, a recent line of work---by Czumaj et al. [STOC'18], Ghaffari et al. [PODC'18], Assadi et al. [SODA'19], and Gamlath et al. [PODC'19]---provides $O(\log\log n)$ time algorithms for $(1+\varepsilon)$-approximate maximum weight matching as well as for $(2+\varepsilon)$-approximate minimum cardinality vertex cover. However, the latter algorithm does not work for the general weighted case of vertex cover, for which the best known algorithm remained at $O(\log n)$ time complexity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源