论文标题

随机矩阵光谱形式在踢相互作用的费米子链中

Random Matrix Spectral Form Factor in Kicked Interacting Fermionic Chains

论文作者

Roy, Dibyendu, Prosen, Tomaž

论文摘要

我们在存在和不存在粒子数($ u(1)$)对称性的情况下,在定期驱动的(floquet)费米子链中研究量子混乱和光谱相关性。我们在分析上表明,光谱形式的进攻精确地遵循了长链状态中随机矩阵理论的预测,对于超过所谓的$ l $ as $ {\ cal o}(\ cal o}(\ cal o}(l^2)$的$ l $ a $ l $ a y limeless th thouble/ehrenfest的时间,$} $,或$ o {$ cal o}(\ cal o}(l^0)(l^0)(l^0)(l^0)(l^0), 分别。使用从本质上需要远程交互本质性质的随机相假设,我们证明了您的时间缩放等同于经典马尔可夫链的光谱间隙的行为,该频谱差距分别在连续的时间(trotter)极限中,分别由Gapless $ xxx $或gapped $ xxz $ xxz $ xxz $ xxz $ xxz $ xxz $ xxz $,spin-1/2 Chain hamililton。

We study quantum chaos and spectral correlations in periodically driven (Floquet) fermionic chains with long-range two-particle interactions, in the presence and absence of particle number conservation ($U(1)$) symmetry. We analytically show that the spectral form factor precisely follows the prediction of random matrix theory in the regime of long chains, and for timescales that exceed the so-called Thouless/Ehrenfest time which scales with the size $L$ as ${\cal O}(L^2)$, or ${\cal O}(L^0)$, in the presence, or absence of $U(1)$ symmetry, respectively. Using random phase assumption which essentially requires long-range nature of interaction, we demonstrate that the Thouless time scaling is equivalent to the behavior of the spectral gap of a classical Markov chain, which is in the continuous-time (Trotter) limit generated, respectively, by a gapless $XXX$, or gapped $XXZ$, spin-1/2 chain Hamiltonian.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源