论文标题

Babai对高级古典群体的猜想与随机发电机

Babai's conjecture for high-rank classical groups with random generators

论文作者

Eberhard, Sean, Jezernik, Urban

论文摘要

令$ g = \ mathrm {scl} _n(q)$是一个Quasisimple古典群,带有$ n $大,然后$ x_1,\ dots,x_k \ in G $ andom,其中$ k \ geq q^c $。我们表明,由此产生的Cayley图的直径由$ q^2 n^{o(1)} $带有概率$ 1 -o(1)$的界限。在特定情况下,$ g = \ mathrm {sl} _n(p)$带有$ p $ a的大小的素数,我们表明,$ k = 3 $相同。

Let $G = \mathrm{SCl}_n(q)$ be a quasisimple classical group with $n$ large, and let $x_1, \dots, x_k \in G$ random, where $k \geq q^C$. We show that the diameter of the resulting Cayley graph is bounded by $q^2 n^{O(1)}$ with probability $1 - o(1)$. In the particular case $G = \mathrm{SL}_n(p)$ with $p$ a prime of bounded size, we show that the same holds for $k = 3$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源