论文标题

$ NA $组的本征函数的全体形态扩展

Holomorphic extensions of eigenfunctions on $NA$ groups

论文作者

Roncal, L., Thangavelu, S.

论文摘要

令$ x = g/k $为非竞争类型的Riemannian对称空间。鉴于Iwasawa分解$ g = Nak的底层半圣母谎言组,我们还可以将$ x $视为可解决的扩展名$ s = na $的iwasawa Group $ n $的Na $,这是$ h $ type Group。在这项工作中,我们研究了$ s $上的laplace-beltrami操作员$Δ_s$ to $ s $ on $ s $ to nitpotent group $ n $的综合中的$Δ_s$的全体形态可扩展性。对于任何$ h $ type $ n $,我们也可以做同样的事情,不一定是iwasawa集团。结果是通过利用与相应$ n $上的Laplacian或Sublaplacian的扩展问题解决方案的连接来实现的。

Let $ X = G/K $ be a rank one Riemannian symmetric space of noncompact type. In view of the Iwasawa decomposition $ G = NAK $ of the underlying semisimple Lie group, we can also view $ X $ as the solvable extension $ S = NA $ of the Iwasawa group $ N$ which is known to be a $H$-type group. In this work we study the holomorphic extendability of eigenfunctions of the Laplace-Beltrami operator $ Δ_S$ on $ S $ to certain domains in the complexification of the nilpotent group $ N$. We can also do the same for any $H$-type group $ N $ not necessarily an Iwasawa group. The results are accomplished by making use of the connection with solutions of the extension problem for the Laplacian or the sublaplacian on the corresponding $ N$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源