论文标题
扁平的四二小维空间中的无质量自旋立方顶点
Massless higher spin cubic vertices in flat four dimmensional space
论文作者
论文摘要
在本文中,我们为在扁平四维空间中的无质骨和效率高的自旋场构造了许多立方相互作用顶点。首先,我们使用所谓的Fradkin-Vasiliev方法在ADS_4空间中构建这些立方顶点,该方法仅适用于非零宇宙常数。然后,我们考虑对FV诉讼产生的所有较高衍生术语的固定限制。我们将自己限制在四个维度上,因为这使我们能够使用类似框架的多方形式主义,从而大大简化了所有计算,并为玻色子和费尔米斯提供了平等地位的描述。
In this paper we construct a number of cubic interaction vertices for massless bosonic and fermionic higher spin fields in flat four dimensional space. First of all, we construct these cubic vertices in AdS_4 space using a so-called Fradkin-Vasiliev approach, which works only for the non-zero cosmological constant. Then we consider a flat limit taking care on all the higher derivative terms which FV-approach generates. We restrict ourselves with the four dimensions because this allows us to use the frame-like multispinor formalism which greatly simplifies all calculations and provides a description for bosons and fermions on equal footing.