论文标题
来自阿尔玛的太阳系模拟行星的提示
Hints of a Population of Solar System Analog Planets from ALMA
论文作者
论文摘要
最近的ALMA DSHARP调查提供了有关行星形成磁盘中亚线结构多样性的启发性结果。这些子结构追踪在局部压力最大值上积累的卵石大小的晶粒,这可能是由于行星盘相互作用或其他行星形成过程所致。 DSHARP来源严重偏向于大型大量磁盘,这些磁盘仅代表磁盘种群的高(灰尘磁通)端。因此,目前尚不清楚在大多数磁盘中是否也出现相似的子结构和相应的物理过程,这些磁盘均为虚弱,更紧凑。在这里,我们探讨了GQ LUP A周围紧凑型磁盘中特征的存在和特征,其有效半径的有效半径比DSHARP磁盘小的1.5至10倍。我们介绍了对GQ LUP系统的ALMA 1.3mm连续观测的分析。通过拟合连续发射的可见性曲线,我们发现包括差距为〜10 au的子结构。 GQ LUP周围的紧凑型磁盘表现出与DSHARP样品中的磁盘相似的子结构,这表明诱捕卵石大小的谷物的机制也在小磁盘中起作用。该特征在〜10 au的特征,如果由于隐藏的行星,则是土星距离处行星形成的证据。我们的结果暗示,要在紧凑型磁盘的共同群体中识别出丰富的子结构世界,随后在这些磁盘中识别出太阳系类似物的种群。这项研究对于理解大多数原球门磁盘中的形成机制和行星种群至关重要。
The recent ALMA DSHARP survey provided illuminating results on the diversity of substructures in planet forming disks. These substructures trace pebble-sized grains accumulated at local pressure maxima, possibly due to planet-disk interactions or other planet formation processes. DSHARP sources are heavily biased to large and massive disks that only represent the high (dust flux) tail end of the disk population. Thus it is unclear whether similar substructures and corresponding physical processes also occur in the majority of disks which are fainter and more compact. Here we explore the presence and characteristics of features in a compact disk around GQ Lup A, the effective radius of which is 1.5 to 10 times smaller than those of DSHARP disks. We present our analysis of ALMA 1.3mm continuum observations of the GQ Lup system. By fitting visibility profiles of the continuum emission, we find substructures including a gap at ~ 10 au. The compact disk around GQ Lup exhibits similar substructures to those in the DSHARP sample, suggesting that mechanisms of trapping pebble-sized grains are at work in small disks as well. Characteristics of the feature at ~ 10 au, if due to a hidden planet, are evidence of planet formation at Saturnian distances. Our results hint at a rich world of substructures to be identified within the common population of compact disks, and subsequently a population of solar system analogs within these disks. Such study is critical to understanding the formation mechanisms and planet populations in the majority of protoplanetary disks.