论文标题

一个有限的奥利弗团体的新家庭满足Laitinen的猜想

A new family of finite Oliver groups satisfying the Laitinen Conjecture

论文作者

Mizerka, Piotr

论文摘要

本文涉及Laitinen的猜想。该猜想预测了史密斯问题的答案,如下所示。对于在具有正好两个固定点的球体上顺利作用的有限组,固定点处的切线空间始终具有由动作差异定义的同构组模块结构?使用诱导群体表示的技术,我们表明了一个新的无限奥利弗组家族,莱蒂宁猜想为此构成。

This paper is concerned with the Laitinen Conjecture. The conjecture predicts an answer to the Smith question which reads as follows. Is it true that for a finite group acting smoothly on a sphere with exactly two fixed points, the tangent spaces at the fixed points have always isomorphic group module structures defined by differentiation of the action? Using the technique of induction of group representations, we indicate a new infinite family of finite Oliver groups for which the Laitinen Conjecture holds.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源