论文标题

质子尺度上的开尔文 - 螺旋杆菌不稳定性,具有精确的动力学平衡

Kelvin-Helmholtz instability at proton scales with an exact kinetic equilibrium

论文作者

Settino, A., Malara, F., Pezzi, O., Onofri, M., Perrone, D., Valentini, F.

论文摘要

开尔文 - 赫尔姆霍尔茨不稳定性是普通流体和等离子体中普遍存在的物理过程,在太空环境中也经常观察到。在本文中,通过混合Vlasov-Maxwell模拟,已经研究了Kelvin-Helmholtz不稳定性的非线性和湍流阶段质子尺度的动力学作用。这项工作的主要目的是指出由于能量沿着湍流级联而到达动能尺度时,这种不稳定性触发的颗粒反应。有趣的是,当开尔文 - 霍尔莫尔兹不稳定性在不是确切的平衡状态的初始状态时发展时,湍流会抑制。另一方面,当考虑初始平衡条件时,可以将能量有效地向短尺度转移,达到典型的质子波长并驱动颗粒的动力学。由于颗粒与湍流波动场的相互作用,质子速度分布显着偏离局部热力学平衡,偏差程度随系统中的湍流水平而增加,并且位于强磁应力区域附近。这些数值结果支持来自地球磁石的湍流动力学驱动的离子动力学效应的磁层多尺度任务的最新空间观察结果(Perri等,2020,JPLPH,86,905860108)以及kelvin-Helmholtz在地球上的MAGNETERTOPHISOSOSOSO-sorsoso-val flaver-necor-vallver(kelvin-helmholtz)的不稳定性( 122,035102)。

The Kelvin-Helmholtz instability is a ubiquitous physical process in ordinary fluids and plasmas, frequently observed also in space environments. In this paper, kinetic effects at proton scales in the nonlinear and turbulent stage of the Kelvin-Helmholtz instability have been studied in magnetized collisionless plasmas by means of Hybrid Vlasov-Maxwell simulations. The main goal of this work is to point out the back reaction on particles triggered by the evolution of such instability, as energy reaches kinetic scales along the turbulent cascade. Interestingly, turbulence is inhibited when Kelvin-Helmholtz instability develops over an initial state which is not an exact equilibrium state. On the other hand, when an initial equilibrium condition is considered, energy can be efficiently transferred towards short scales, reaches the typical proton wavelengths and drives the dynamics of particles. As a consequence of the interaction of particles with the turbulent fluctuating fields, the proton velocity distribution deviates significantly from the local thermodynamic equilibrium, the degree of deviation increasing with the level of turbulence in the system and being located near regions of strong magnetic stresses. These numerical results support recent space observations from the Magnetospheric MultiScale mission of ion kinetic effects driven by the turbulent dynamics at the Earth's magnetosheath (Perri et al., 2020, JPlPh, 86, 905860108) and by the Kelvin-Helmholtz instability in the Earth's magnetosphere (Sorriso-Valvo et al., 2019, PhRvL, 122, 035102).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源