论文标题
分布式假设测试,具有可变长度编码
Distributed Hypothesis Testing with Variable-Length Coding
论文作者
论文摘要
当\ emph {平均}而不是\ emph {maximum}通信负载被限制为以前的作品时,请考虑使用可变长度编码的分布式测试对独立性进行分布式测试的问题。该论文表征了单个传感器单个决策中心系统的最佳II级错误指数,当时通信与无噪声速率-R $链接或嘈杂的离散无内存通道(DMC)时,具有最大I型I错误概率,并具有opet-feedback。具体来说,令$ε$表示最大允许的I型错误概率。然后,在平均通信负载的约束下,系统的最佳指数与该系统的最佳指数在最大通信负载约束下具有$ r/(1-ε)$链接的最佳指数。因此,在平均通信负载限制下,强烈的匡威不会保持。类似的观察结果也适用于针对DMC的独立性测试。使用可变长度的编码和停止回馈,并且在平均通信负载约束下,最佳的II型错误指数$ c $ $ c $上的DMC等于固定长度编码下的最佳指数,当通信超过dmc的dmc $ c(1-ε)^{ - 1} $时,通信的最大通信负载约束。特别是,在具有停止反馈的DMC上的可变长度编码下,强烈的相反结果无法保持,最佳误差指数仅通过其容量来取决于DMC的过渡定律。
The problem of distributed testing against independence with variable-length coding is considered when the \emph{average} and not the \emph{maximum} communication load is constrained as in previous works. The paper characterizes the optimum type-II error exponent of a single sensor single decision center system given a maximum type-I error probability when communication is either over a noise-free rate-$R$ link or over a noisy discrete memoryless channel (DMC) with stop-feedback. Specifically, let $ε$ denote the maximum allowed type-I error probability. Then the optimum exponent of the system with a rate-$R$ link under a constraint on the average communication load coincides with the optimum exponent of such a system with a rate $R/(1-ε)$ link under a maximum communication load constraint. A strong converse thus does not hold under an average communication load constraint. A similar observation holds also for testing against independence over DMCs. With variable-length coding and stop-feedback and under an average communication load constraint, the optimum type-II error exponent over a DMC of capacity $C$ equals the optimum exponent under fixed-length coding and a maximum communication load constraint when communication is over a DMC of capacity $C(1-ε)^{-1}$. In particular, under variable-length coding over a DMC with stop feedback a strong converse result does not hold and the optimum error exponent depends on the transition law of the DMC only through its capacity.