论文标题
Burge Transpose运输图案
Transport of patterns by Burge transpose
论文作者
论文摘要
我们采取了第一步,开发了从Fishburn排列到(修改)上升序列的模式运输理论。给定一组避免Fishburn排列的模式,我们为相应的修改升级序列集提供了明确的结构。实际上,我们的方法更为笼统,可以在所谓的Cayley排列的排列和等效类别之间运输模式。这种模式的运输依赖于我们称之为Burge Transpose的简单操作。它以某些称为Burge单词的双词运行。此外,使用Cayley排列上的网格模式,我们提出了将模式传输作为Cayley置换子集之间的wilf等效性的替代视图。我们还强调了与原始上升序列的联系。
We take the first steps in developing a theory of transport of patterns from Fishburn permutations to (modified) ascent sequences. Given a set of pattern avoiding Fishburn permutations, we provide an explicit construction for the basis of the corresponding set of modified ascent sequences. Our approach is in fact more general and can transport patterns between permutations and equivalence classes of so called Cayley permutations. This transport of patterns relies on a simple operation we call the Burge transpose. It operates on certain biwords called Burge words. Moreover, using mesh patterns on Cayley permutations, we present an alternative view of the transport of patterns as a Wilf-equivalence between subsets of Cayley permutations. We also highlight a connection with primitive ascent sequences.