论文标题
低复杂性顺序搜索与尺寸依赖性测量噪声
Low Complexity Sequential Search with Size-Dependent Measurement Noise
论文作者
论文摘要
本文考虑了目标定位问题,在任何给定时间,代理可以选择一个区域来查询该区域中目标的存在。假定测量噪声随着代理选择的查询区域的大小而增加。由实际应用,例如阵列处理中的初始光束对齐,网络中的重击球器检测以及机器人技术中的视觉搜索,我们考虑实际上重要的复杂性约束/指标:\ textIt {time复杂性},\ textIt {计算和记忆复杂性},以及在可能的质疑和心脏质量方面的质疑集的复杂性。 提出了两种新颖的搜索策略,即$ dyapm $和$ hiepm $。与解决方案的实用性相关,$ dyapm $和$ hiepm $具有连接的查询几何形状(即查询集始终是连接的集合),该几何始终是连接的集合)。此外,$ hiepm $具有层次结构,因此可能进一步降低了可能的查询集的基数,使$ hiepm $实际上适合于诸如在阵列处理中的光束形成之类的应用中,其中内存限制有利于较小的代码书大小。 通过对外部詹森·香农(EJS)差异的统一分析,$ dyapm $在搜索时间复杂性(分辨率(率)和误差(可靠性)中渐近(渐近)在搜索时间复杂性中均无最佳。另一方面,$ hiepm $的速率几乎是最佳的。此外,$ hiepm $ and $ dyapm $均显示出在非反应政权中的先前工作。
This paper considers a target localization problem where at any given time an agent can choose a region to query for the presence of the target in that region. The measurement noise is assumed to be increasing with the size of the query region the agent chooses. Motivated by practical applications such as initial beam alignment in array processing, heavy hitter detection in networking, and visual search in robotics, we consider practically important complexity constraints/metrics: \textit{time complexity}, \textit{computational and memory complexity}, and the complexity of possible query sets in terms of geometry and cardinality. Two novel search strategy, $dyaPM$ and $hiePM$, are proposed. Pertinent to the practicality of out solutions, $dyaPM$ and $hiePM$ are of a connected query geometry (i.e. query set is always a connected set) implemented with low computational and memory complexity. Additionally, $hiePM$ has a hierarchical structure and, hence, a further reduction in the cardinality of possible query sets, making $hiePM$ practically suitable for applications such as beamforming in array processing where memory limitations favors a smaller codebook size. Through a unified analysis with Extrinsic Jensen Shannon (EJS) Divergence, $dyaPM$ is shown to be asymptotically optimal in search time complexity (asymptotic in both resolution (rate) and error (reliability)). On the other hand, $hiePM$ is shown to be near-optimal in rate. In addition, both $hiePM$ and $dyaPM$ are shown to outperform prior work in the non-asymptotic regime.