论文标题

标量hencky可塑性的连续性方程和特征流

Continuity equation and characteristic flow for scalar Hencky plasticity

论文作者

Babadjian, Jean-Francois, Francfort, Gilles A.

论文摘要

我们研究了由最简单的可塑性模型,Hencky可塑性引起的连续性方程式的唯一性问题。关联的系统是$ \ rm {curl \;}(μσ)= 0 $的形式的,其中$μ$是一种非负措施,$σ$ a二维差异免费单位向量矢量字段。在建立该领域的Sobolev规律性之后,我们提供了对特征流以及相关解决方案的所有可能几何形状的精确描述。

We investigate uniqueness issues for a continuity equation arising out of the simplest model for plasticity, Hencky plasticity. The associated system is of the form $\rm{ curl\;}(μσ)=0$ where $μ$ is a nonnegative measure and $σ$ a two-dimensional divergence free unit vector field. After establishing the Sobolev regularity of that field, we provide a precise description of all possible geometries of the characteristic flow, as well as of the associated solutions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源