论文标题
Möbius能量的Sobolev梯度
Sobolev Gradients for the Möbius Energy
论文作者
论文摘要
为了优化规定的同位素类别中封闭的嵌入式曲线的形状,我们使用基于梯度的方法来近似Möbius能量的固定点。相对于Sobolev内部产品,类似于$ W^{3/2,2} $ - 内部产品。这导致优化方法比基于$ l^2 $级别的标准技术要高效和鲁棒。
Aiming at optimizing the shape of closed embedded curves within prescribed isotopy classes, we use a gradient-based approach to approximate stationary points of the Möbius energy. The gradients are computed with respect to Sobolev inner products similar to the $W^{3/2,2}$-inner product. This leads to optimization methods that are significantly more efficient and robust than standard techniques based on $L^2$-gradients.