论文标题
与邻居同住。 iii。仔细检查旋转$ - $轨道相互作用的暗物质光环对
Living with Neighbors. III. Scrutinizing the Spin$-$Orbit Alignment of Interacting Dark Matter Halo Pairs
论文作者
论文摘要
我们表明,旋转$ - $轨道对齐(SOA;即,光环的自旋矢量与邻邻邻域的轨道角动量向量之间的角对齐)为银河系角动量如何发展提供了重要的线索。特别是,我们在一组宇宙学$ n $ body模拟中鉴定了病毒性 - 拉迪乌斯的接触对光环对,质量比从1/3到3,并根据其总(动力学+潜在)能量将其分为合并和Flyby子样本。在旋转$ - $ - $轨道角度分布中,我们发现了一个重要的SOA,其中75.0美元\ pm0.6 $%的合并邻居和$ 58.7 \ pm0.6 $%的飞行邻居都在prograde轨道上。我们样品的总体SOA主要是由快速旋转的光环驱动的,证实了良好的相互作用速度更快地旋转晕圈。更有趣的是,我们首次发现在旋转$ - $ - $ - 轨道角度分布中,对于合并和Flyby案例,近乎垂直但仍在垂直的相互作用($ \ sim75^{\ circ} $)。这种前极相互作用占据了缓慢旋转的光晕,证明未对准的相互作用减少了光环的旋转。前极相互作用的频率与光晕质量相关,但与大规模密度相关。这立即调用在质量和环境上是有条件的自旋叉现象。前极相互作用将很快翻转慢速旋转器的自旋,以与邻居的轨道角动量保持一致。最后,我们提出了一个将SOA连接到基于Spin-Flip参数的环境大规模结构的方案。
We present that the spin$-$orbit alignment (SOA; i.e., the angular alignment between the spin vector of a halo and the orbital angular momentum vector of its neighbor) provides an important clue to how galactic angular momenta develop. In particular, we identify virial-radius-wise contact halo pairs with mass ratios from 1/3 to 3 in a set of cosmological $N$-body simulations, and divide them into merger and flyby subsamples according to their total (kinetic+potential) energy. In the spin$-$orbit angle distribution, we find a significant SOA in that $75.0\pm0.6$ % of merging neighbors and $58.7\pm0.6$ % of flybying neighbors are on the prograde orbit. The overall SOA of our sample is mainly driven by fast-rotating halos, corroborating that a well-aligned interaction spins a halo faster. More interestingly, we find for the first time a strong number excess of nearly perpendicular but still prograde interactions ($\sim75^{\circ}$) in the spin$-$orbit angle distribution for both the merger and flyby cases. Such prograde-polar interactions predominate for slow-rotating halos, testifying that misaligned interactions reduce the halos' spin. The frequency of the prograde-polar interactions correlates with the halo mass, yet anticorrelates with the large-scale density. This instantly invokes the spin-flip phenomenon that is conditional on the mass and environment. The prograde-polar interaction will soon flip the spin of a slow-rotator to align with its neighbor's orbital angular momentum. Finally, we propose a scenario that connects the SOA to the ambient large-scale structure based on the spin-flip argument.