论文标题

通过量子纠缠在纯基态的子系统中的热平衡的出现

Emergence of a thermal equilibrium in a subsystem of a pure ground state by quantum entanglement

论文作者

Seki, Kazuhiro, Yunoki, Seiji

论文摘要

通过在小簇上的Spin-1/2抗磁性Heisenberg模型的数值确切计算,我们证明了子系统$ A $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a+b $ a+b $的量子纠缠可以在子系统$ a $ a $中诱导热平衡。在这里,整个系统都用纠缠剪切的纠缠剪切,该系统涵盖了子系统$ a $的全部卷。温度$ {\ cal t} _ {a}子系统$ a $不是参数,但可以从纠缠von neumann entropy $ {\ cal s} _ {a} $中确定,总能量$ {\ cal e} _} _ {a} $ a} $ a $ a $ a $ a $ a $ a $ a $ a $的状态的状态。我们表明,可以通过最大程度地减少子系统$ a $ $ a $的密度密度矩阵操作员的相对熵和吉布斯州(即热力学密度矩阵操作员)的相对于couplingsuptians usepling of ueplingsepters $ a $ a $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ b $ $ b $ $ b $ $ b $ $ b $ $。温度$ {\ cal t} _ {a} $与热力学温度实质上相同,在该温度下,使用统计机制中的规范机制评估的熵和内部能量,用于孤立子系统$ A $数值与纠缠熵$ {\ cal s} _ {\ cal a} $ { $ .FIDELITY计算确定子系统的密度矩阵$ a $的密度矩阵运算符,用于整个系统的纯但纠缠基$ a+b $匹配,在有限尺寸的群集中最大的$ 1.5 \%$错误,研究了热力学密度矩阵$ a $ a $的热力学密度矩阵运算符$} $ a} $} $}。我们认为,在纠缠的纯状态下的量子波动可以模仿子系统中的热波动。我们还提供了两个简单但非平凡的分析示例,这些示例是免费的,这些陈述是准确的。我们进一步讨论了我们发现的含义和可能的应用。

By numerically exact calculations of spin-1/2 antiferromagnetic Heisenberg models on small clusters, we demonstrate that quantum entanglement between subsystems $A$ and $B$ in a pure ground state of a whole system $A+B$ can induce thermal equilibrium in subsystem $A$. Here, the whole system is bipartitoned with the entanglement cut that covers the entire volume of subsystem $A$. Temperature ${\cal T}_{A}$ of subsystem $A$ is not a parameter but can be determined from the entanglement von Neumann entropy ${\cal S}_{A}$ and the total energy ${\cal E}_{A}$ of subsystem $A$ calculated for the ground state of the whole system. We show that temperature ${\cal T}_{A}$ can be derived by minimizing the relative entropy for the reduced density matrix operator of subsystem $A$ and the Gibbs state (i.e., thermodynamic density matrix operator) of subsystem $A$ with respect to the coupling strength between subsystems $A$ and $B$. Temperature ${\cal T}_{A}$ is essentially identical to the thermodynamic temperature, for which the entropy and the internal energy evaluated using the canonical ensemble in statistical mechanics for the isolated subsystem $A$ agree numerically with the entanglement entropy ${\cal S}_{A}$ and the total energy ${\cal E}_{A}$ of subsystem $A$.Fidelity calculations ascertain that the reduced density matrix operator of subsystem $A$ for the pure but entangled ground state of the whole system $A+B$ matches, within a maximally $1.5\%$ error in the finite size clusters studied, the thermodynamic density matrix operator of subsystem $A$ at temperature ${\cal T}_{A}$. We argue that quantum fluctuation in an entangled pure state can mimic thermal fluctuation in a subsystem. We also provide two simple but nontrivial analytical examples of free bosons and free fermions for which these statements are exact. We furthermore discuss implications and possible applications of our finding.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源