论文标题

保护多边形而不会失去触摸

Guarding a Polygon Without Losing Touch

论文作者

Ashok, Barath, Augustine, John, Mehekare, Aditya, Ragupathi, Sridhar, Ramachandran, Srikkanth, Sourav, Suman

论文摘要

我们从1973年从移动多代理角度研究了克莱首次提出的古典美术馆问题。具体来说,我们需要最佳数量的代理(也称为后卫)来导航和定位在带有$ n $顶点的未知简单多边形的内部中,以使所有代理的集体视图覆盖多边形。 我们考虑了明显连接的设置,其中代理必须通过视线链路保持连接,这是与多代理系统特别相关的要求。我们首先为在时间$ o(n)$中运行的可见连接设置提供了一种集中式算法,这当然是最佳的。然后,我们为两个不同的分布式设置提供算法。在第一个设置中,代理只能感知相对接近度(即可以判断哪对对象的距离更接近),而他们可以在第二个设置中感知确切的距离。尽管代理不知道多边形,但我们的分布式算法也起作用。此外,我们提供了下限,以表明我们的分布式算法几乎是最佳的。 我们明显的连接守卫可确保(i)守卫形成一个连接的网络,(ii)多边形得到了充分的保护。因此,这种守卫提供了分布式基础架构,以执行此多边形的任何几何算法。

We study the classical Art Gallery Problem first proposed by Klee in 1973 from a mobile multi-agents perspective. Specifically, we require an optimally small number of agents (also called guards) to navigate and position themselves in the interior of an unknown simple polygon with $n$ vertices such that the collective view of all the agents covers the polygon. We consider the visibly connected setting wherein agents must remain connected through line of sight links -- a requirement particularly relevant to multi-agent systems. We first provide a centralized algorithm for the visibly connected setting that runs in time $O(n)$, which is of course optimal. We then provide algorithms for two different distributed settings. In the first setting, agents can only perceive relative proximity (i.e., can tell which of a pair of objects is closer) whereas they can perceive exact distances in the second setting. Our distributed algorithms work despite agents having no prior knowledge of the polygon. Furthermore, we provide lower bounds to show that our distributed algorithms are near-optimal. Our visibly connected guarding ensures that (i) the guards form a connected network and (ii) the polygon is fully guarded. Consequently, this guarding provides the distributed infrastructure to execute any geometric algorithm for this polygon.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源