论文标题
私人随机凸优化:线性时间的最佳速率
Private Stochastic Convex Optimization: Optimal Rates in Linear Time
论文作者
论文摘要
我们研究了随机凸优化的差异私有算法:最大程度地减少给定的人口损失的问题。来自凸损耗函数的分布的样品。 Bassily等人的最新工作。 (2019年)已经确立了鉴于$ n $样本可实现的超额人口损失的最佳限制。不幸的是,他们实现此界限的算法相对效率低下:它需要$ o(\ min \ {n^{3/2},n^{5/2}/d}/d \})$渐变计算,其中$ d $是优化问题的尺寸。 我们描述了两种用于得出DP凸优化算法的新技术,既可以实现多余损失的最佳结合,又使用$ O(\ min \ {n,n^2/d \})$渐变计算。特别是,该算法与最佳非私有算法的运行时间匹配。第一种方法依赖于可变批量大小的使用,并通过Feldman等人的迭代技术进行隐私扩增进行了分析。 (2018)。第二种方法是基于对具有不同隐私的近似最佳解决方案定位的问题的一般减少。反过来,可以使用现有(非私有)均匀稳定的优化算法来实现此类本地化。与较早的工作一样,我们的算法需要轻微的平稳性假设。我们还提供了一种线性时间算法,该算法实现了强凸情况下的多余损失的最佳结合,以及对于非平滑案例的算法更快的算法。
We study differentially private (DP) algorithms for stochastic convex optimization: the problem of minimizing the population loss given i.i.d. samples from a distribution over convex loss functions. A recent work of Bassily et al. (2019) has established the optimal bound on the excess population loss achievable given $n$ samples. Unfortunately, their algorithm achieving this bound is relatively inefficient: it requires $O(\min\{n^{3/2}, n^{5/2}/d\})$ gradient computations, where $d$ is the dimension of the optimization problem. We describe two new techniques for deriving DP convex optimization algorithms both achieving the optimal bound on excess loss and using $O(\min\{n, n^2/d\})$ gradient computations. In particular, the algorithms match the running time of the optimal non-private algorithms. The first approach relies on the use of variable batch sizes and is analyzed using the privacy amplification by iteration technique of Feldman et al. (2018). The second approach is based on a general reduction to the problem of localizing an approximately optimal solution with differential privacy. Such localization, in turn, can be achieved using existing (non-private) uniformly stable optimization algorithms. As in the earlier work, our algorithms require a mild smoothness assumption. We also give a linear-time algorithm achieving the optimal bound on the excess loss for the strongly convex case, as well as a faster algorithm for the non-smooth case.