论文标题
定向分子标记用于超导加速器 - 腔淬火斑点检测
Stereoscopic molecular tagging for superconducting accelerator-cavity quench spot detection
论文作者
论文摘要
超导式射频(SRF)腔体由超氟氦4(He II)冷却的腔体是许多现代粒子加速器的基础,因为它们的高质量因子。但是,从腔体上的毫米表面缺陷引起的焦耳加热会导致腔淬灭,这限制了加速器的最大加速梯度。开发一种非接触式检测技术来准确定位这些表面缺陷,是提高SRF腔的性能,因此是加速器的关键。在最近的概念验证实验(Phys。Rev.Applied,11,044003(2019))中,我们证明了基于He $ _2^*$ Molecular截然词线的跟踪基于He II中在He II中创建的Surtraper Hot斑点的分子标记赛车仪(MTV)技术,可以用来位于He II中的热点。为了使这项技术实际上有用,在这里,我们描述了立体MTV设置的进一步开发,用于在三维(3D)空间中跟踪示踪剂线的运动。我们通过将瞬态电压脉冲应用于安装在基板板上的小加热器上来模拟淬火点。从正交方向拍摄的两个摄像机拍摄的漂移示踪线的图像用于在3D空间中重建线条配置文件。开发了一种用于分析3D线轮廓的新算法,其中包含了加热器的有限尺寸效应。我们表明,加热器的中心位置可以在基板表面上复制,而不确定性仅为几百微米,从而证明了这种方法的可实用性。
Superconducting radio-frequency (SRF) cavities cooled by superfluid helium-4 (He II) are building blocks of many modern particle accelerators due to their high quality factor. However, Joule heating from sub-millimeter surface defects on cavities can lead to cavity quenching, which limits the maximum acceleration gradient of the accelerators. Developing a non-contacting detection technology to accurately locate these surface defects is the key to improve the performance of SRF cavities and hence the accelerators. In a recent proof-of-concept experiment (Phys. Rev. Applied, 11, 044003 (2019)), we demonstrated that a molecular tagging velocimetry (MTV) technique based on the tracking of a He$_2^*$ molecular tracer line created nearby a surface hot spot in He II can be utilized to locate the hot spot. In order to make this technique practically useful, here we describe our further development of a stereoscopic MTV setup for tracking the tracer line's motion in three-dimensional (3D) space. We simulate a quench spot by applying a transient voltage pulse to a small heater mounted on a substrate plate. Images of the drifted tracer line, taken with two cameras from orthogonal directions, are used to reconstruct the line profile in 3D space. A new algorithm for analyzing the 3D line profile is developed, which incorporates the finite size effect of the heater. We show that the center location of the heater can be reproduced on the substrate surface with an uncertainty of only a few hundred microns, thereby proving the practicability of this method.