论文标题

通过潜在的理论来检测鳍歧管的完整性

Detecting the completeness of a Finsler manifold via potential theory for its infinity Laplacian

论文作者

Araújo, Damião J., Mari, Luciano, Pessoa, Leandro F.

论文摘要

在本文中,我们研究了Finsler歧管$ M $的Eikonal和Infinity Laplace操作员的一些潜在理论方面。我们的主要结果表明,可以根据liouville属性和无穷大的最大原则检测到$ m $的远期完整性,包括合适的不等式的亚物业,包括$δ^n_ \ infty U \ ge g(u)$。此外,事实证明,$ \ infty $ a的产能标准和Ekeland原理的粘度版本相当于$ m $的远期完整性。一部分证明是在相对紧凑的集合上的$δ^n_ \ infty U = g(u)$的解决方案的新的边界到内部的Lipschitz估计上取决于的,这意味着对于某些整个有限的解决方案而言,均匀的Lipschitz估计不需要$ M $。

In this paper, we study some potential theoretic aspects of the eikonal and infinity Laplace operator on a Finsler manifold $M$. Our main result shows that the forward completeness of $M$ can be detected in terms of Liouville properties and maximum principles at infinity for subsolutions of suitable inequalities, including $Δ^N_\infty u \ge g(u)$. Also, an $\infty$-capacity criterion and a viscosity version of Ekeland principle are proved to be equivalent to the forward completeness of $M$. Part of the proof hinges on a new boundary-to-interior Lipschitz estimate for solutions of $Δ^N_\infty u = g(u)$ on relatively compact sets, that implies a uniform Lipschitz estimate for certain entire, bounded solutions without requiring the completeness of $M$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源