论文标题

均衡繁殖具有持续重量更新

Equilibrium Propagation with Continual Weight Updates

论文作者

Ernoult, Maxence, Grollier, Julie, Querlioz, Damien, Bengio, Yoshua, Scellier, Benjamin

论文摘要

平衡传播(EP)是一种学习算法,通过计算梯度与时间(BPTT)紧密匹配的梯度,但与空间中的局部学习规则相匹配,它通过计算梯度与反向传播的梯度紧密相匹配。给定输入$ x $和关联的目标$ y $,EP分为两个阶段:在第一阶段,神经元在第一个稳定状态下自由发展;在第二阶段,输出神经元被推到$ y $,直到它们达到第二个稳态。但是,在现有的EP实现中,学习规则在时间上不局部:重量更新是在第二阶段的动态收集到的,并且需要不再物理上可用的第一阶段的信息。在这项工作中,我们提出了一个EP的版本,称为连续平衡传播(C-EP),其中神经元和突触动力学在第二阶段同时出现,以便重量更新在时间上局部。这种学习规则在时空中的本地规则为EP实施了极其节能的硬件实施的可能性。从理论上讲,我们证明,只要学习率足够小,在第二阶段的每个时间步骤中,神经元和突触的动力学遵循BPTT给出的损失的梯度(定理1)。我们展示了在MNIST上进行C-EP的培训,并将C-EP推广到神经元通过不对称连接连接的神经网络。我们通过实验表明,网络更新越遵循BPTT的梯度,它在培训方面的表现最好。这些结果通过更好地遵守硬件约束,同时保持其与反向传播的紧密联系,使EP更接近生物学。

Equilibrium Propagation (EP) is a learning algorithm that bridges Machine Learning and Neuroscience, by computing gradients closely matching those of Backpropagation Through Time (BPTT), but with a learning rule local in space. Given an input $x$ and associated target $y$, EP proceeds in two phases: in the first phase neurons evolve freely towards a first steady state; in the second phase output neurons are nudged towards $y$ until they reach a second steady state. However, in existing implementations of EP, the learning rule is not local in time: the weight update is performed after the dynamics of the second phase have converged and requires information of the first phase that is no longer available physically. In this work, we propose a version of EP named Continual Equilibrium Propagation (C-EP) where neuron and synapse dynamics occur simultaneously throughout the second phase, so that the weight update becomes local in time. Such a learning rule local both in space and time opens the possibility of an extremely energy efficient hardware implementation of EP. We prove theoretically that, provided the learning rates are sufficiently small, at each time step of the second phase the dynamics of neurons and synapses follow the gradients of the loss given by BPTT (Theorem 1). We demonstrate training with C-EP on MNIST and generalize C-EP to neural networks where neurons are connected by asymmetric connections. We show through experiments that the more the network updates follows the gradients of BPTT, the best it performs in terms of training. These results bring EP a step closer to biology by better complying with hardware constraints while maintaining its intimate link with backpropagation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源