论文标题
预测银河系结构中的暗物质速度分布:针对流体动力学模拟的测试
Predicting the dark matter velocity distribution in galactic structures: tests against hydrodynamic cosmological simulations
论文作者
论文摘要
降低银河系暗物质(DM)搜索中的理论不确定性是一个重要的挑战,因为几个实验现在正在研究与流行的(是否存在粒子)候选者有关的参数空间。由于许多DM信号预测依赖于DM速度分布的知识 - 直接搜索,恒星捕获,p波抑制或sommerfeld增强的歼灭速率,原始黑洞的微透镜等。除了在宇宙学模拟上拟合的麦克斯韦近似值或临时外推外,已经提出了一种方法,仅从星系的详细质量含量和某些对称性假设(例如,伊迪丁顿逆转录和其矛盾的扩展)中,仅从星系的详细质量含量和某些对称性假设中得出DM相位空间分布。尽管从理论上讲是合理的,但这些方法仍然基于简化的假设,并且可以质疑它们与真实星系的相关性。在本文中,我们使用缩放宇宙学模拟来量化相关的不确定性。假设各向同性,我们可以预测在模拟中测量的DM和Baryonic含量的速度分布及其力矩,并将其与真实的含量进行比较。作为安装在完整模拟数据上的输入银河质量模型,对于某些速度相关的可观察物,我们达到的预测性降至约10%,比麦克斯韦模型要好得多。在像Gaia任务这样的恒星调查应该使我们能够改善银河质量模型的约束时,这种中等理论的错误尤其令人鼓舞。
Reducing theoretical uncertainties in Galactic dark matter (DM) searches is an important challenge as several experiments are now delving into the parameter space relevant to popular (particle or not) candidates. Since many DM signal predictions rely on the knowledge of the DM velocity distribution---direct searches, capture by stars, p-wave-suppressed or Sommerfeld-enhanced annihilation rate, microlensing of primordial black holes, etc.---it is necessary to assess the accuracy of our current theoretical handle. Beyond Maxwellian approximations or ad-hoc extrapolations of fits on cosmological simulations, approaches have been proposed to self-consistently derive the DM phase-space distribution only from the detailed mass content of the Galaxy and some symmetry assumptions (e.g. the Eddington inversion and its anisotropic extensions). Although theoretically sound, these methods are still based on simplifying assumptions and their relevance to real galaxies can be questioned. In this paper, we use zoomed-in cosmological simulations to quantify the associated uncertainties. Assuming isotropy, we predict the speed distribution and its moments from the DM and baryonic content measured in simulations, and compare them with the true ones. Taking as input galactic mass models fitted on full simulation data, we reach a predictivity down to ~ 10% for some velocity-related observables, significantly better than some Maxwellian models. This moderate theoretical error is particularly encouraging at a time when stellar surveys like the Gaia mission should allow us to improve constraints on Galactic mass models.