论文标题
关于阿尔泽 - 夸的身份,伯努利多项式
On Alzer-Kwong's Identities for Bernoulli polynomials
论文作者
论文摘要
在本文中,我们证明了Bernoulli多项式的新身份,这些身份扩展了Alzer和Kwong的结果。关键的想法是使用伯尔努利多项式的$ \ mathbb z_p $上的Volkenborn积分来建立集成的复发关系。另外,我们的方法可以获得一些已知的身份。
In this paper, we prove new identities for Bernoulli polynomials that extend Alzer and Kwong's results. The key idea is to use the Volkenborn integral over $\mathbb Z_p$ of the Bernoulli polynomials to establish recurrence relations on the integrands. Also, some known identities are obtained by our approach.