论文标题
RICCI流动的一些局部最大原则
Some local Maximum principles along Ricci Flow
论文作者
论文摘要
在本说明中,我们在缩放不变曲率条件下沿RICCI流动建立了局部最大原理。这统一了已知的沿RICCI流动曲率沿RICCI流动的结果。通过与Dirichlet热核估计结合使用,我们还提供了Hochard R. Bamler,E。Cabezas-Rivas给出的最大原理的局部版本的更直接证明,以及B.在弯曲条件下方的下限。
In this note, we establish a local maximum principle along Ricci flow under scaling invariant curvature condition. This unifies the known preservation of nonnegativity results along Ricci flow with unbounded curvature. By combining with the Dirichlet heat kernel estimates, we also give a more direct proof of Hochard's localized version of a maximum principle given by R. Bamler, E. Cabezas-Rivas, and B. Wilking on the lower bound of curvature conditions.