论文标题

用于模拟相关自旋系统的全息量子算法

Holographic quantum algorithms for simulating correlated spin systems

论文作者

Foss-Feig, Michael, Hayes, David, Dreiling, Joan M., Figgatt, Caroline, Gaebler, John P., Moses, Steven A., Pino, Juan M., Potter, Andrew C.

论文摘要

我们提出了一套“全息”量子算法的套件,用于有效的地面制备和相关自旋系统的动态演化,这比所模拟的旋转数量所需的偏远量子。该算法利用了矩阵 - 加成状态(MP)和量子通道之间的等效性,以及部分测量和量子重复使用,以模拟仅使用A($ d $ -1)的Qubits和Angilly Qubit sim sim dempruity simal量表的量子量表,仅使用a($ d $ -1)的量子组来模拟一个($ d $ -1)的子集,并构成尺寸的量表。接地状态可以直接从已知的MP表示,也可以通过全息量子量子质量(Holovqe)获得。也可以使用额外的(乘法)$ {\ rm poly}(t)$在Qubit Resources中的额外(乘法)$ {\ rm poly}(t)$ heverhead在时间$ t $下的本地哈密顿人的动态。这些技术为MP的有效量子模拟带来了指数型较大的键差,包括2D和3D系统的地面,或者以快速纠缠的生长进行热能动力学。为了证明潜在的资源节省,我们在一台被困的离子量子计算机上对抗磁性海森堡链进行了Holovqe模拟,仅使用一对Qubits即可实现无限链链的确切地面能量的10(3)\%\%$。

We present a suite of "holographic" quantum algorithms for efficient ground-state preparation and dynamical evolution of correlated spin-systems, which require far-fewer qubits than the number of spins being simulated. The algorithms exploit the equivalence between matrix-product states (MPS) and quantum channels, along with partial measurement and qubit re-use, in order to simulate a $D$-dimensional spin system using only a ($D$-1)-dimensional subset of qubits along with an ancillary qubit register whose size scales logarithmically in the amount of entanglement present in the simulated state. Ground states can either be directly prepared from a known MPS representation, or obtained via a holographic variational quantum eigensolver (holoVQE). Dynamics of MPS under local Hamiltonians for time $t$ can also be simulated with an additional (multiplicative) ${\rm poly}(t)$ overhead in qubit resources. These techniques open the door to efficient quantum simulation of MPS with exponentially large bond-dimension, including ground-states of 2D and 3D systems, or thermalizing dynamics with rapid entanglement growth. As a demonstration of the potential resource savings, we implement a holoVQE simulation of the antiferromagnetic Heisenberg chain on a trapped-ion quantum computer, achieving within $10(3)\%$ of the exact ground-state energy of an infinite chain using only a pair of qubits.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源