论文标题
没有现象学的可塑性:第一步
Plasticity without phenomenology: a first step
论文作者
论文摘要
展示了一种新型的,同时的多尺度方法,用于中间/宏观尺度可塑性。它利用了基于部分微分方程(PDE)的精心设计的耦合理论,即通过微观脱位动力学(DD)的时间平均输入的介导的晶体可塑性(DD),调整了最先进的数学粗粒粒度方案。与常规DD相比,在逼真的,缓慢的加载速率上,介镜样品的应力应变反应得到了菌株的可观速度,并在计算时间内得到了显着加速。对于负载和位移受控的模拟,晶体取向,负载率以及初始移动率与连缝位错密度的比率对宏观响应的影响。这些结果是在不使用任何现象学组成型假设的情况下获得的,除了不是微观DD的一部分的热激活。结果还证明了内部应力对位错的集体行为的影响,在一组示例中表现为I阶段I阶段对II期硬化过渡的影响。
A novel, concurrent multiscale approach to meso/macroscale plasticity is demonstrated. It utilizes a carefully designed coupling of a partial differential equation (pde) based theory of dislocation mediated crystal plasticity with time-averaged inputs from microscopic Dislocation Dynamics (DD), adapting a state-of-the-art mathematical coarse-graining scheme. The stress-strain response of mesoscopic samples at realistic, slow, loading rates up to appreciable values of strain is obtained, with significant speed-up in compute time compared to conventional DD. Effects of crystal orientation, loading rate, and the ratio of the initial mobile to sessile dislocation density on the macroscopic response, for both load and displacement controlled simulations are demonstrated. These results are obtained without using any phenomenological constitutive assumption, except for thermal activation which is not a part of microscopic DD. The results also demonstrate the effect of the internal stresses on the collective behavior of dislocations, manifesting, in a set of examples, as a Stage I to Stage II hardening transition.