论文标题

立方形式,取消异常和模块化

Cubic forms, anomaly cancellation and modularity

论文作者

Han, Fei, Huang, Ruizhi, Liu, Kefeng, Zhang, Weiping

论文摘要

由立方体形式和取消Witten弗雷德·霍普金斯的异常取消公式,我们在旋转,旋转$^c $,spin $^{w_2} $和可定位的12个manifolds上提供了一些新的立方形式。当歧管与边界与边界相关时,我们将它们与$η$ -Invariants联系起来,而当歧管为旋转$^c $或spin $^{w_2} $时,mod 2索引在10维特征submanifolds上。我们生产这些立方形式的方法是(广义)Witten类的组合以及Aggine $ e_8 $的基本表示的特征。

Motivated by the cubic forms and anomaly cancellation formulas of Witten-Freed-Hopkins, we give some new cubic forms on spin, spin$^c$, spin$^{w_2}$ and orientable 12-manifolds respectively. We relate them to $η$-invariants when the manifolds are with boundary, and mod 2 indices on 10 dimensional characteristic submanifolds when the manifolds are spin$^c$ or spin$^{w_2}$. Our method of producing these cubic forms is a combination of (generalized) Witten classes and the character of the basic representation of affine $E_8$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源