论文标题

多维扩散的绝对连续性和奇异性

On Absolute Continuity and Singularity of Multidimensional Diffusions

论文作者

Criens, David

论文摘要

考虑多维的两个定律\(p \)和\(q \),可能具有爆炸性扩散,并具有常见的扩散系数\(\ Mathfrak {a} \)和漂移系数\(\ Mathfrak {b}分别具有扩散系数\(\ langle \ mathfrak {c},\ Mathfrak {a} \ Mathfrak {c} \ rangle^{c} \ rangle^{ - 1} { - 1} \ Mathfrak {a} {a} \ lang coftic coftic coftic \ lang coftic \ lang( \ Mathfrak {C},\ Mathfrak {A} \ Mathfrak {C} \ rangle^{ - 1} \ Mathfrak {B} \)。当辅助扩散\(p^\ crocr \)几乎肯定地爆炸时,我们显示\(p \ ll q \)时,并且仅当辅助扩散\(p \ perp q \)爆炸时,当时\(p \ perp q \)当辅助扩散\(p^\ circt \)几乎不爆炸。作为应用,我们为绝对连续性和奇异性提供了Khasminskii-Type积分测试,这是对时间变化的布朗运动爆炸的积分测试,我们讨论了对数学金融的应用。

Consider two laws \(P\) and \(Q\) of multidimensional possibly explosive diffusions with common diffusion coefficient \(\mathfrak{a}\) and drift coefficients \(\mathfrak{b}\) and \(\mathfrak{b} + \mathfrak{a} \mathfrak{c}\), respectively, and the law \(P^\circ\) of an auxiliary diffusion with diffusion coefficient \(\langle \mathfrak{c},\mathfrak{a}\mathfrak{c}\rangle^{-1}\mathfrak{a}\) and drift coefficient \(\langle \mathfrak{c}, \mathfrak{a}\mathfrak{c}\rangle^{-1}\mathfrak{b}\). We show that \(P \ll Q\) if and only if the auxiliary diffusion \(P^\circ\) explodes almost surely and that \(P\perp Q\) if and only if the auxiliary diffusion \(P^\circ\) almost surely does not explode. As applications we derive a Khasminskii-type integral test for absolute continuity and singularity, an integral test for explosion of time-changed Brownian motion, and we discuss applications to mathematical finance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源