论文标题

Nikolskii-Type不平等假设下的$ l^p $ norms的marcinkiewicz-type离散化

Marcinkiewicz-type discretization of $L^p$-norms under the Nikolskii-type inequality assumption

论文作者

Kosov, Egor

论文摘要

本文研究了$ l^p(μ)$的子空间的积分规范的抽样离散问题。在某些Nikolskii-Type不等式有效的子空间上获得了几乎接近最佳结果。规范的离散化问题与概率问题有关,即通过采样的高维随机矢量的近似值近似。作为我们方法的副产品,我们完善了O. gu $ \ cucute {e} $ don and M. Rudelson的结果。特别是,所获得的改进恢复了J. Bourgain,J。Lindenstrauss和V. Milman的定理,内容涉及$ l^p [0,1] $的有限尺寸子空间的嵌入到$ \ ell_p^m $中。本文中的证据使用了R. Van Handel的链接技术的最新发展。

The paper studies the sampling discretization problem for integral norms on subspaces of $L^p(μ)$. Several close to optimal results are obtained on subspaces for which certain Nikolskii-type inequality is valid. The problem of norms discretization is connected with the probabilistic question about the approximation with high probability of marginals of a high dimensional random vector by sampling. As a byproduct of our approach we refine the result of O. Gu$\acute{e}$don and M. Rudelson concerning the approximation of marginals. In particular, the obtained improvement recovers a theorem of J. Bourgain, J. Lindenstrauss, and V. Milman concerning embeddings of finite dimensional subspaces of $L^p[0, 1]$ into $\ell_p^m$. The proofs in the paper use the recent developments of the chaining technique by R. van Handel.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源