论文标题
关于纯数字字段的判别
On the discriminant of pure number fields
论文作者
论文摘要
Let $K=\mathbb{Q}(\sqrt[n]{a})$ be an extension of degree $n$ of the field $\Q$ of rational numbers, where the integer $a$ is such that for each prime $p$ dividing $n$ either $p\nmid a$ or the highest power of $p$ dividing $a$ is coprime to $p$;当$ a,n $是企业或$ a $无平方的情况下,显然可以满足此条件。该论文包含一个明确的公式,用于$ k $的判别物,仅涉及划分$ a,n $的主要权力。
Let $K=\mathbb{Q}(\sqrt[n]{a})$ be an extension of degree $n$ of the field $\Q$ of rational numbers, where the integer $a$ is such that for each prime $p$ dividing $n$ either $p\nmid a$ or the highest power of $p$ dividing $a$ is coprime to $p$; this condition is clearly satisfied when $a, n$ are coprime or $a$ is squarefree. The paper contains an explicit formula for the discriminant of $K$ involving only the prime powers dividing $a,n$.