论文标题

残留类无Euler功能值的值

Residue classes free of values of Euler's function

论文作者

Ford, Kevin, Konyagin, Sergei, Pomerance, Carl

论文摘要

我们表征了哪些残基类包含无限多个量表(Euler函数的值),哪些不包含。我们表明,所有不含基准的残基类别的结合均具有渐近密度3/4,也就是说,几乎所有2 mod 4的数字均在一个不含基本的残基类中。在另一个方向上,我们显示了奇数m的正密度,因此对于任何$ s \ ge0 $和任何偶数$ a $ a $,残基类$ a \ pmod {2^sm} $都包含无限的数量。

We characterize which residue classes contain infinitely many totients (values of Euler's function) and which do not. We show that the union of all residue classes that are totient-free has asymptotic density 3/4, that is, almost all numbers that are 2 mod 4 are in a residue class that is totient-free. In the other direction, we show the existence of a positive density of odd numbers m, such that for any $s\ge0$ and any even number $a$, the residue class $a\pmod{2^sm}$ contains infinitely many totients.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源