论文标题
磁场可调式的互联网棋盘充电订单和nematicity在sr $ _2 $ ruo $ _4 $的表面层中
Magnetic-Field Tunable Intertwined Checkerboard Charge Order and Nematicity in the Surface Layer of Sr$_2$RuO$_4$
论文作者
论文摘要
在密切相关的电子材料中,电子,自旋和电荷自由度紧密相互交织。这通常会导致对外部物理刺激高度敏感的有希望的技术应用机遇的紧急订单的稳定。在钙钛矿鲜明情况下,这种敏感性在物理特性的戏剧性变化中表现出了uro $ _6 $ _6 $ contahedra的细微结构细节,从稳定神秘的相关基础状态,从一个热烈争论的超导状态通过电子性nematicitientientity和metamagnetic量子量子量子症状和纤维电脑症。在这里,证明了ruo $ _6 $ octahedra在sr $ _2 $ ruo $ _4 $的表面层的旋转产生在散装材料中未观察到的新的紧急订单。通过低能电子状态的原子尺度光谱表征,在费米能量附近发现了四个范霍夫奇异性。奇异性可以直接链接到交织在一起的nematic和Checkerboard充电顺序。证明了通过磁场对这些范霍夫奇异性之一进行调整,这表明表面层在〜32T的磁场处经历了Lifshitz的过渡。结果确定了SR $ _2 $ ruo $ _4 $的表面层作为令人兴奋的2D相关电子系统,并突出了在这些系统中设计低能电子状态的机会。
In strongly correlated electron materials, the electronic, spin, and charge degrees of freedom are closely intertwined. This often leads to the stabilization of emergent orders that are highly sensitive to external physical stimuli promising opportunities for technological applications. In perovskite ruthenates, this sensitivity manifests in dramatic changes of the physical properties with subtle structural details of the RuO$_6$ octahedra, stabilizing enigmatic correlated ground states, from a hotly debated superconducting state via electronic nematicity and metamagnetic quantum criticality to ferromagnetism. Here, it is demonstrated that the rotation of the RuO$_6$ octahedra in the surface layer of Sr$_2$RuO$_4$ generates new emergent orders not observed in the bulk material. Through atomic-scale spectroscopic characterization of the low-energy electronic states, four van Hove singularities are identified in the vicinity of the Fermi energy. The singularities can be directly linked to intertwined nematic and checkerboard charge order. Tuning of one of these van Hove singularities by magnetic field is demonstrated, suggesting that the surface layer undergoes a Lifshitz transition at a magnetic field of ~32T. The results establish the surface layer of Sr$_2$RuO$_4$ as an exciting 2D correlated electron system and highlight the opportunities for engineering the low-energy electronic states in these systems.