论文标题
从沟通复杂性到纠缠范围扩散区域法律,处于当地哈密顿人的基础状态
From communication complexity to an entanglement spread area law in the ground state of gapped local Hamiltonians
论文作者
论文摘要
在这项工作中,我们在两个看似不同的问题之间建立了联系。第一个问题涉及表征纠缠的特性,处于局部汉密尔顿局部的底层状态,这是量子多体物理学中的一个核心话题。第二个问题是在EPR辅助方面测试双方状态的量子通信复杂性,这是量子信息理论中众所周知的问题。我们构建了一个用于测试(或测量)基础状态的通信协议,并利用其通信复杂性揭示了基态纠缠的新结构属性。该特性被称为纠缠扩散,大致测量了基态切割的最大和最小的施密特系数之间的比率。我们的主要结果表明,宽大的基础状态在任何削减中都具有有限的纠缠,表现出“区域法”的行为。我们的结果通常适用于任何相互作用图,并针对特殊情况有改进的结合。该纠缠范围扩散区域法包括在[Aharonov等人,焦点14]中构建的相互作用图,该图违反了纠缠熵的广义区域法。我们的建筑还提供了Li和Haldane在物理学上的猜想的证据,这些构想对晶格汉密尔顿人的纠缠谱[Li and Haldane,Prl'08]。在技术方面,我们使用了哈密顿模拟算法的最新进展以及量子相估计,从而在任意交互图上为近似地面太空投影仪(AGSP)提供了新的结构。
In this work, we make a connection between two seemingly different problems. The first problem involves characterizing the properties of entanglement in the ground state of gapped local Hamiltonians, which is a central topic in quantum many-body physics. The second problem is on the quantum communication complexity of testing bipartite states with EPR assistance, a well-known question in quantum information theory. We construct a communication protocol for testing (or measuring) the ground state and use its communication complexity to reveal a new structural property for the ground state entanglement. This property, known as the entanglement spread, roughly measures the ratio between the largest and the smallest Schmidt coefficients across a cut in the ground state. Our main result shows that gapped ground states possess limited entanglement spread across any cut, exhibiting an "area law" behavior. Our result quite generally applies to any interaction graph with an improved bound for the special case of lattices. This entanglement spread area law includes interaction graphs constructed in [Aharonov et al., FOCS'14] that violate a generalized area law for the entanglement entropy. Our construction also provides evidence for a conjecture in physics by Li and Haldane on the entanglement spectrum of lattice Hamiltonians [Li and Haldane, PRL'08]. On the technical side, we use recent advances in Hamiltonian simulation algorithms along with quantum phase estimation to give a new construction for an approximate ground space projector (AGSP) over arbitrary interaction graphs.