论文标题

非省散装对应的广义Bloch带理论

Generalized Bloch band theory for non-Hermitian bulk-boundary correspondence

论文作者

Imura, Ken-Ichiro, Takane, Yositake

论文摘要

散装对应是拓扑物理的基石。在某些非热拓扑系统中,这种基本关系被打破了,因为在周期性边界条件下针对Bloch能带计算的拓扑数未能在开放边界下重现边界属性。为了恢复此类非热系统中的庞大对应关系,需要超越Bloch带理论的框架。我们基于修改的周期性边界条件开发非热的Bloch带理论,该理论允许以符合其边界特性一致的方式正确描述大部分非热拓扑绝缘子。以Su-Schrieffer-Heeger模型为例,以非热门版本为例,我们演示了我们的场景,其中散装对应关系的概念自然而然地将其推广到非热拓扑系统。

Bulk-boundary correspondence is the cornerstone of topological physics. In some non-Hermitian topological system this fundamental relation is broken in the sense that the topological number calculated for the Bloch energy band under the periodic boundary condition fails to reproduce the boundary properties under the open boundary. To restore the bulk-boundary correspondence in such non-Hermitian systems a framework beyond the Bloch band theory is needed. We develop a non-Hermitian Bloch band theory based on a modified periodic boundary condition that allows a proper description of the bulk of a non-Hermitian topological insulator in a manner consistent with its boundary properties. Taking a non-Hermitian version of the Su-Schrieffer-Heeger model as an example, we demonstrate our scenario, in which the concept of bulk-boundary correspondence is naturally generalized to non-Hermitian topological systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源