论文标题
用于微分方程的公理化方法
An Axiomatic Approach to Existence and Liveness for Differential Equations
论文作者
论文摘要
本文提出了一种具有差分动力学逻辑(DL)的普通微分方程(ODE)的存在性验证的公理方法。该方法得出的证据表明,给定ODE的解决方案存在足够长的时间,可以到达给定的目标区域而不留下给定的进化域。许多细微的微妙之处使离散的无性验证技术(例如循环变体)的概括变得复杂。例如,ODE解决方案可能会在有限的时间内爆炸,或者它们向目标的进度可能会收敛到零。这些细微之处是通过使用具有完整公理化的ode不变性属性来连续完善的ode livestions来处理的。这种方法是广泛适用的:从文献中进行了一些可笑的论点,并作为DL中公理改进的特殊实例进行了调查并得出。这些派生还纠正了被调查的文献中的几个声音错误,这进一步凸显了颂歌推理的微妙之处和公理方法的实用性。这种方法的一个重要特殊案例推论了ODE的(全球)存在性能,这是每个Ode Livices论点的基本组成部分。因此,所有存在性质及其证明的概括都立即导致对颂歌论证的相应概括。总体而言,由此产生的通用细化步骤的库可以使新颂歌存在和DL公理的可笑性证明规则的合理发展和理由。这些见解是通过在keymaera x x hybrid Systems中实施Ode Livices证明的实施来实施的。
This article presents an axiomatic approach for deductive verification of existence and liveness for ordinary differential equations (ODEs) with differential dynamic logic (dL). The approach yields proofs that the solution of a given ODE exists long enough to reach a given target region without leaving a given evolution domain. Numerous subtleties complicate the generalization of discrete liveness verification techniques, such as loop variants, to the continuous setting. For example, ODE solutions may blow up in finite time or their progress towards the goal may converge to zero. These subtleties are handled in dL by successively refining ODE liveness properties using ODE invariance properties which have a complete axiomatization. This approach is widely applicable: several liveness arguments from the literature are surveyed and derived as special instances of axiomatic refinement in dL. These derivations also correct several soundness errors in the surveyed literature, which further highlights the subtlety of ODE liveness reasoning and the utility of an axiomatic approach. An important special case of this approach deduces (global) existence properties of ODEs, which are a fundamental part of every ODE liveness argument. Thus, all generalizations of existence properties and their proofs immediately lead to corresponding generalizations of ODE liveness arguments. Overall, the resulting library of common refinement steps enables both the sound development and justification of new ODE existence and of liveness proof rules from dL axioms. These insights are put into practice through an implementation of ODE liveness proofs in the KeYmaera X theorem prover for hybrid systems.