论文标题

$ f(r)$重力中具有恒定和可变的红移功能的蠕虫孔

Traversable wormholes in $f(R)$ gravity with constant and variable redshift functions

论文作者

Godani, Nisha, Samanta, Gauranga C.

论文摘要

本文旨在研究$ f(r)$重力中的可穿越虫洞,其可行$ f(r)$函数定义为$ f(r)= r-μr_c\ big(\ frac {r_c} {r_c} {r_c} {r_c} \ big) r_c> 0 $和$ 0 <p <1 $ \ citep {amendola}。虫洞的度量取决于形状函数$ b(r)$和红移功能$ ϕ(r)$,其表征其属性,因此形状函数和红移功能在虫洞建模中起着重要作用。在这项工作中,确定了(i)$ ϕ(r)= \ frac {1} {r} $和(ii)$ ϕ(r)= c $(contents),用$ b(r)= \ frac {r} {exp {exp(r_0)} $ \ citep {godani1}确定虫洞解决方案。此外,研究了尊重能源条件的地区。

The present paper is aimed at the study of traversable wormholes in $f(R)$ gravity with a viable $f(R)$ function defined as $f(R)=R-μR_c\Big(\frac{R}{R_c}\Big)^p$, where $R$ is scalar curvature, $μ$, $R_c$ and $p$ are constants with $μ, R_c>0$ and $0<p<1$ \citep{Amendola}. The metric of wormhole is dependent on shape function $b(r)$ and redshift function $ϕ(r)$ which characterize its properties, so the shape function and redshift function play an important role in wormhole modeling. In this work, the wormhole solutions are determined for (i) $ϕ(r)=\frac{1}{r}$ and (ii) $ϕ(r)=c$ (constant) with $b(r)=\frac{r}{exp(r-r_0)}$ \citep{godani1}. Further, the regions respecting the energy conditions are investigated.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源