论文标题
laurent偏斜正交多项式和相关的符号矩阵
Laurent skew orthogonal polynomials and related symplectic matrices
论文作者
论文摘要
引入并研究了具有lurent对称性的特定偏度正交多项式。它们也被证明是符号概括性特征值问题的特征函数。这些多项式的修改给出了一些符合性特征值问题,并且相应的矩阵被证明等于蝴蝶矩阵,蝴蝶矩阵是符号矩阵的规范形式。
Particular class of skew orthogonal polynomials are introduced and investigated, which possess Laurent symmetry. They are also shown to appear as eigenfunctions of symplectic generalized eigenvalue problems. The modification of these polynomials gives some symplectic eigenvalue problem and the corresponding matrix is shown to be equivalent to butterfly matrix, which is a canonical form of symplectic matrices.