论文标题

物质拓扑阶段的地面子空间作为错误纠正代码

Ground Subspaces of Topological Phases of Matter as Error Correcting Codes

论文作者

Qiu, Yang, Wang, Zhenghan

论文摘要

拓扑量子计算被认为本质上是易于断层的。一种数学上的理由是证明物质拓扑阶段的地面子空间或基态歧管行为作为具有宏观距离的误差校正代码。尽管这是广泛假定的,并用作物理文献中物质拓扑阶段的定义,除了Kitaev的开创性论文中的Abelian Anyon Models外,直到最近,尚无数学上的非亚伯式模型。 Cui等人将基于任何有限群体的所有Kitaev模型从加倍的Abelian Anyon模型扩展到了将定理扩展到。这些证据使用哈密顿人的详细知识非常明确,因此似乎很难将证据进一步扩展以涵盖其他模型,例如Levin-Wen。我们基于拓扑量子场理论(TQFTS)采用完全不同的方法,并证明磁盘公理和TQFT中的磁盘公理的晶格实现本质上是TQO1和TQO2条件的等效性。我们通过提供基础TQFTS的磁盘公理和环的晶格版本,确认了Levin-Wen模型和Dijkgraaf-Witten TQFTS的拓扑晶格汉密尔顿模式和Dijkgraaf-Witten tQfts的地面子空间的误差校正属性。纠正地面子空间的误差属性也通过散布的Fracton模型(例如HAAH代码)共享。我们建议通过纠正误差属性来表征物质的拓扑阶段,并将间隙的分布模型称为宽松的模型。

Topological quantum computing is believed to be inherently fault-tolerant. One mathematical justification would be to prove that ground subspaces or ground state manifolds of topological phases of matter behave as error correction codes with macroscopic distance. While this is widely assumed and used as a definition of topological phases of matter in the physics literature, besides the doubled abelian anyon models in Kitaev's seminal paper, no non-abelian models are proven to be so mathematically until recently. Cui et al extended the theorem from doubled abelian anyon models to all Kitaev models based on any finite group. Those proofs are very explicit using detailed knowledge of the Hamiltonians, so it seems to be hard to further extend the proof to cover other models such as the Levin-Wen. We pursue a totally different approach based on topological quantum field theories (TQFTs), and prove that a lattice implementation of the disk axiom and annulus axiom in TQFTs as essentially the equivalence of TQO1 and TQO2 conditions. We confirm the error correcting properties of ground subspaces for topological lattice Hamiltonian schemas of the Levin-Wen model and Dijkgraaf-Witten TQFTs by providing a lattice version of the disk axiom and annulus of the underlying TQFTs. The error correcting property of ground subspaces is also shared by gapped fracton models such as the Haah codes. We propose to characterize topological phases of matter via error correcting properties, and refer to gapped fracton models as lax-topological.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源