论文标题

弦乐代数的仪表理论

Gauge theory for string algebroids

论文作者

Garcia-Fernandez, Mario, Rubio, Roberto, Tipler, Carl

论文摘要

我们介绍了全体形态字符串代数的力矩图图片,其中通过courant代数的内形构图描述了哈密顿量规的作用。我们力矩图的零位点由Calabi系统的解决方案(一个方程式系统)提供,该方程式为经典的Calabi问题和Hull-Strominger系统提供了统一的框架。我们的主要结果与解决方案的模量空间的几何形状有关,并假设在示例中实现的技术条件。我们证明,模量空间带有伪卡勒度量公制,其dilaton函数(指标的拓扑公式)和无穷小的唐纳森 - uhlenbeck-yau型定理给出了带有kähler电位的伪卡勒度量。

We introduce a moment map picture for holomorphic string algebroids where the Hamiltonian gauge action is described by means of inner automorphisms of Courant algebroids. The zero locus of our moment map is given by the solutions of the Calabi system, a coupled system of equations which provides a unifying framework for the classical Calabi problem and the Hull-Strominger system. Our main results are concerned with the geometry of the moduli space of solutions, and assume a technical condition which is fulfilled in examples. We prove that the moduli space carries a pseudo-Kähler metric with Kähler potential given by the dilaton functional, a topological formula for the metric, and an infinitesimal Donaldson-Uhlenbeck-Yau type theorem.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源