论文标题
一致的在线高斯流程回归没有样品复杂性瓶颈
Consistent Online Gaussian Process Regression Without the Sample Complexity Bottleneck
论文作者
论文摘要
高斯工艺为非线性非参数贝叶斯推论提供了一个框架,广泛适用于科学和工程。不幸的是,他们的计算负担与训练样本量的立方体缩放,如果样本永久到达无限。此问题需要与流数据一起使用,迄今为止,这些数据主要缺乏收敛保证。因此,我们开发了第一个在线高斯过程近似值,该过程可保留趋同后部的收敛,即渐近后验一致性,同时可以改善其与样本量的棘手的复杂性生长。我们提出了一个在线压缩方案,该方案在每次后验更新之后,就以当前后部为中心的Hellinger指标修复了一个错误社区,并贪婪地将内核词典元素扔出去,直到其边界被击中。我们称之为生成的方法帕斯蒂姆在线高斯流程(POG)。为了减小误差半径,保留了精确的渐近一致性(定理1(i)),以极限内无限的内存成本。另一方面,对于恒定的误差半径,POG会收敛到群体后部的邻域(定理1(ii)),但在特征空间的度量熵(定理2)中以有限的记忆为单位(定理2)。与固定定义过去点历史的子空间维度相比,实验结果介绍了几个非线性回归问题,这些非线性回归问题阐明了这种方法的优点。
Gaussian processes provide a framework for nonlinear nonparametric Bayesian inference widely applicable across science and engineering. Unfortunately, their computational burden scales cubically with the training sample size, which in the case that samples arrive in perpetuity, approaches infinity. This issue necessitates approximations for use with streaming data, which to date mostly lack convergence guarantees. Thus, we develop the first online Gaussian process approximation that preserves convergence to the population posterior, i.e., asymptotic posterior consistency, while ameliorating its intractable complexity growth with the sample size. We propose an online compression scheme that, following each a posteriori update, fixes an error neighborhood with respect to the Hellinger metric centered at the current posterior, and greedily tosses out past kernel dictionary elements until its boundary is hit. We call the resulting method Parsimonious Online Gaussian Processes (POG). For diminishing error radius, exact asymptotic consistency is preserved (Theorem 1(i)) at the cost of unbounded memory in the limit. On the other hand, for constant error radius, POG converges to a neighborhood of the population posterior (Theorem 1(ii))but with finite memory at-worst determined by the metric entropy of the feature space (Theorem 2). Experimental results are presented on several nonlinear regression problems which illuminates the merits of this approach as compared with alternatives that fix the subspace dimension defining the history of past points.