论文标题
具有严格相关式的功能的Kohn-Sham方程:使用光谱重新归一化方法进行研究
Kohn-Sham equations with functionals from the strictly-correlated regime: Investigation with a spectral renormalization method
论文作者
论文摘要
我们重新适应了在非线性光学中引入的光谱重新归一化方法,以求解密度功能理论(DFT)的Kohn-Sham(KS)方程,重点是基于基于严格相关的电子(SCE)状态的功能,这特别具有挑战性。该方法的重要方面是:(i)同时计算特征值和密度; (ii)它使用随机初始猜测收敛; (iii)易于实现。使用这种方法,我们可以首次收敛的Kohn-SHAM方程具有功能,其中包括下一个领先的术语在密度功能理论的强相互作用极限中,所谓的零点能(ZPE)函数以及与包括精确SCE和ZPE项的互动 - 强度交互交互 - ISI功能(ISI)功能。这项工作是对量子系统的未来研究的第一个基础,这些量子系统限制在具有不同统计和远程排斥的低维度,例如在存在随机外部潜力的情况下具有强大的长距离排斥相互作用的费米和玻色子的定位性能。
We re-adapt a spectral renormalization method, introduced in nonlinear optics, to solve the Kohn-Sham (KS) equations of density functional theory (DFT), with a focus on functionals based on the strictly-correlated electrons (SCE) regime, which are particularly challenging to converge. Important aspects of the method are: (i) the eigenvalues and the density are computed simultaneously; (ii) it converges using randomized initial guesses; (iii) easy to implement. Using this method we could converge for the first time the Kohn-Sham equations with functionals that include the next leading term in the strong-interaction limit of density functional theory, the so-called zero-point energy (ZPE) functional as well as with an interaction-strength-interpolation (ISI) functional that includes both the exact SCE and ZPE terms. This work is the first building block for future studies on quantum systems confined in low dimensions with different statistics and long-range repulsions, such as localization properties of fermions and bosons with strong long-range repulsive interactions in the presence of a random external potential.