论文标题
递归重新归一化组转换中的紧急几何形状
Emergent geometry in recursive renormalization group transformations
论文作者
论文摘要
已提出全息偶性猜想是一种新型的非扰动理论框架,用于描述强相关的电子。但是,并未指定二元性转换是为了在这种理论机械凝结物理学的应用中引起歧义。在这项研究中,我们提出了全息二元转化的处方。基于递归重新归一化组(RG)的变换,我们获得了一种有效的田间理论,该理论通过引入额外的维度来表现有效作用的RG流动。诉诸于该处方时,我们表明所有耦合常数的RG方程都被重新构成,因为新兴几何形状具有额外的尺寸。我们声称目前的处方是将全息二元性猜想应用于凝结物理物理学的微观基础。
Holographic duality conjecture has been proposed to be a novel non-perturbative theoretical framework for the description of strongly correlated electrons. However, the duality transformation is not specified to cause ambiguity in the application of this theoretical machinery to condensed matter physics. In this study, we propose a prescription for the holographic duality transformation. Based on recursive renormalization group (RG) transformations, we obtain an effective field theory, which manifests the RG flow of an effective action through the introduction of an extra dimension. Resorting to this prescription, we show that RG equations of all coupling constants are reformulated as emergent geometry with an extra dimension. We claim that the present prescription serves as microscopic foundation for the application of the holographic duality conjecture to condensed matter physics.