论文标题

物理启发的深度学习来表征准圆,旋转的非二进制黑洞合并的信号歧管

Physics-inspired deep learning to characterize the signal manifold of quasi-circular, spinning, non-precessing binary black hole mergers

论文作者

Khan, Asad, Huerta, E. A., Das, Arnav

论文摘要

二进制黑洞合并的自旋分布包含有关这些物体的形成通道以及它们形成,进化和结合的天体物理环境的关键信息。为了量化深度学习的适用性,以表征准圆形,旋转的,非不必要的二进制黑洞合并的信号歧管,我们引入了一种经过新的优化方案训练的WaveNet的修改版本,该方案结合了天体黑洞的旋转特性的一般相对论约束。神经网络模型经过150万美元的培训,验证和测试。 s^z _ {\ {1,\,2 \}} | \ leq 0.8 $。使用这种神经网络模型,我们量化了在没有噪声的情况下可以准确地推断黑洞合并的天体物理参数。我们通过计算测试数据集中的波形之间的重叠以及我们的神经网络预测的质量比和单个旋转的相应信号。我们发现,高性能计算和物理启发的优化算法的收敛能够准确地重建跨考虑的参数空间,可以准确地重建质量比率和二进制黑洞合并的单个旋转。这是朝着明智地利用物理启发的深度学习模型来重建二进制黑洞合并在现实检测方案中的自旋分布的重要一步。

The spin distribution of binary black hole mergers contains key information concerning the formation channels of these objects, and the astrophysical environments where they form, evolve and coalesce. To quantify the suitability of deep learning to characterize the signal manifold of quasi-circular, spinning, non-precessing binary black hole mergers, we introduce a modified version of WaveNet trained with a novel optimization scheme that incorporates general relativistic constraints of the spin properties of astrophysical black holes. The neural network model is trained, validated and tested with 1.5 million $\ell=|m|=2$ waveforms generated within the regime of validity of NRHybSur3dq8, i.e., mass-ratios $q\leq8$ and individual black hole spins $ | s^z_{\{1,\,2\}} | \leq 0.8$. Using this neural network model, we quantify how accurately we can infer the astrophysical parameters of black hole mergers in the absence of noise. We do this by computing the overlap between waveforms in the testing data set and the corresponding signals whose mass-ratio and individual spins are predicted by our neural network. We find that the convergence of high performance computing and physics-inspired optimization algorithms enable an accurate reconstruction of the mass-ratio and individual spins of binary black hole mergers across the parameter space under consideration. This is a significant step towards an informed utilization of physics-inspired deep learning models to reconstruct the spin distribution of binary black hole mergers in realistic detection scenarios.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源