论文标题

金融市场的强大套利条件

Robust Arbitrage Conditions for Financial Markets

论文作者

Singh, Derek, Zhang, Shuzhong

论文摘要

本文使用Wasserstein距离作为模棱两可的措施调查了分销不确定性下的金融市场的套利特性。考虑了经典套利条件的弱和强烈形式。引入了一个放松,我们将术语“统计套利”一词归因于此。得出了稳健套利条件的更简单的双重公式。在这种情况下,出现了许多有趣的问题。一个问题是:我们可以计算出存在套利机会之外的批判性瓦斯汀半径吗?曲线将歧义程度映射到统计套利水平的形状是多少?关于最佳(最坏)案例分布和最佳投资组合的结构的其他问题。为了回答这些问题,开发了一些理论,并为特定的问题实例进行了计算实验。最后,讨论了一些未来研究的开放问题和建议。

This paper investigates arbitrage properties of financial markets under distributional uncertainty using Wasserstein distance as the ambiguity measure. The weak and strong forms of the classical arbitrage conditions are considered. A relaxation is introduced for which we coin the term statistical arbitrage. The simpler dual formulations of the robust arbitrage conditions are derived. A number of interesting questions arise in this context. One question is: can we compute a critical Wasserstein radius beyond which an arbitrage opportunity exists? What is the shape of the curve mapping the degree of ambiguity to statistical arbitrage levels? Other questions arise regarding the structure of best (worst) case distributions and optimal portfolios. Towards answering these questions, some theory is developed and computational experiments are conducted for specific problem instances. Finally some open questions and suggestions for future research are discussed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源