论文标题
度量图GFF中交叉概率的缩放限制
Scaling Limits of Crossing Probabilities in Metric Graph GFF
论文作者
论文摘要
我们考虑在$δ\ mathbb {z}^2 $的多边形上定义的公制高斯自由场(GFF),并具有交替的边界数据。公制图GFF的级别渗透的交叉概率具有缩放限制。精心选择边界数据时,可以将交叉概率的缩放限制明确构造为多个SLE $ _4 $纯分区功能的“融合”。
We consider metric graph Gaussian free field (GFF) defined on polygons of $δ\mathbb{Z}^2$ with alternating boundary data. The crossing probabilities for level-set percolation of metric graph GFF have scaling limits. When the boundary data is well-chosen, the scaling limits of crossing probabilities can be explicitly constructed as "fusion" of multiple SLE$_4$ pure partition functions.