论文标题

从谱系的角度求解迁移重组方程

Solving the migration-recombination equation from a genealogical point of view

论文作者

Alberti, Frederic, Baake, Ellen, Letter, Ian, Martinez, Servet

论文摘要

我们考虑了离散的时间迁移 - 分组方程,这是一种确定性的非线性动力学系统,描述了在大量设定定律中,迁移和重组在迁移和重组下的遗传类型分布的演变。我们将这种动态(时间向前)与马尔可夫链相关联,即标记的分区过程,在时间上向后。这样,我们获得了迁移重组方程解的随机表示。结果,仅根据马尔可夫链的过渡矩阵的功能,获得了非线性动力学的明确解。最后,我们研究了马尔可夫链的限制和准限制行为,该行为立即访问了动力学系统的渐近行为。我们终于在连续的时间绘制了类似情况。

We consider the discrete-time migration-recombination equation, a deterministic, nonlinear dynamical system that describes the evolution of the genetic type distribution of a population evolving under migration and recombination in a law of large numbers setting. We relate this dynamics (forward in time) to a Markov chain, namely a labelled partitioning process, backward in time. This way, we obtain a stochastic representation of the solution of the migration-recombination equation. As a consequence, one obtains an explicit solution of the nonlinear dynamics, simply in terms of powers of the transition matrix of the Markov chain. Finally, we investigate the limiting and quasi-limiting behaviour of the Markov chain, which gives immediate access to the asymptotic behaviour of the dynamical system. We finally sketch the analogous situation in continuous time.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源