论文标题
恒定涡度旅行的准周期水波
Traveling quasi-periodic water waves with constant vorticity
论文作者
论文摘要
我们证明了时间的第一个分叉结果准周期性流动波解决方案,用于涡度周期性水波。特别是,我们证明存在具有恒定涡度的重力毛皮水波方程的较小振幅时间,用于在平坦的底部由空间周期性的自由界面界定的平坦底部的二维流体。这些准周期溶液存在于所有深度,重力和涡度的值,并将表面张力限制为渐近完全完整的Lebesgue度量的鲍雷尔集合。
We prove the first bifurcation result of time quasi-periodic traveling waves solutions for space periodic water waves with vorticity. In particular we prove existence of small amplitude time quasi-periodic solutions of the gravity-capillary water waves equations with constant vorticity, for a bidimensional fluid over a flat bottom delimited by a space-periodic free interface. These quasi-periodic solutions exist for all the values of depth, gravity and vorticity, and restricting the surface tension to a Borel set of asymptotically full Lebesgue measure.